Resposta
Note que \(\Theta = (0,\infty) \subseteq \mathbb{R}\). Portanto, \(p=1\). Precisamos encontrar o valor de “\(\theta\)” que satisfaz \[
E_\theta(X) = \frac{1}{n} \sum X_i
\]
Sabemos que \[
E_\theta(X) = \int^\theta_0 x \frac{1}{\theta} dx = \frac{\theta}{2} = \bar{X}
\]
Logo, \(\hat{\theta}_{\mathrm{MM}}(\boldsymbol{X}_n) = 2\bar{X}\) é o estimador obtido pelo método de momentos.
Sabemos que \(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n) = \max\{X_1,\dots,X_n\}\), logo, \[
\begin{aligned}
\mathrm{EQM}_\theta(\hat{\theta}_{\mathrm{MM}}(\pmb{X}_n), \theta) &= E_\theta((\hat{\theta}_{\mathrm{MM}}(\pmb{X}_n) - \theta)^2) \\
&=\mathrm{Var}_\theta(\hat{\theta}_{\mathrm{MM}}(\pmb{X}_n)) + \mathrm{Viés}(\hat{\theta}_{\mathrm{MM}}(\pmb{X}_n), \theta)^2 \\ \\
E_\theta(\hat{\theta}_{\mathrm{MM}}(\pmb{X}_n)) &= 2 E_\theta(X) = 2 \frac{\theta}{2} = \theta \\
\Rightarrow \mathrm{Viés}_\theta(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n),\theta) &= 0, \forall \theta \in \Theta. \\ \\
\mathrm{Var}_\theta(\hat{\theta}_{\mathrm{MM}}(\pmb{X}_n)) = \mathrm{Var}_\theta(2\bar{X}) &\stackrel{\mathrm{i.i.d.}}{=} 4 \frac{\mathrm{Var}_\theta(X)}{n}
\stackrel{\mathrm{Unif}}{=} \frac{\theta^2}{3n} \\
\Rightarrow \mathrm{EQM}_\theta(\hat{\theta}_{\mathrm{MM}}(\pmb{X}_n),\theta) = \frac{\theta^2}{3n}
\end{aligned}
\]
Para o EMV, \[
\mathrm{EQM}_\theta(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n), \theta) = \mathrm{Var}_\theta(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n))
+\mathrm{Viés}(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n), \theta)^2 \\ \\
\]
Precisaremos encontrar a distribuição do estimador, \[
P_\theta(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n) \leq t) = P_\theta(\max\pmb{X}_n \leq t) \stackrel{\mathrm{iid}}{=} \prod P_\theta(X \leq t) = P_\theta(X \leq t)^n
\] note que \[
P_\theta(X \leq t) = \left\{\begin{array}{ll}
0, & t \leq 0 \\
\frac{t}{\theta}, & 0 < t \leq \theta \\
1, & t \geq \theta \\
\end{array}\right. \Rightarrow P_\theta(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n)\leq t)^n = \left\{\begin{array}{ll}
0, & t \leq 0 \\
\left(\frac{t}{\theta}\right)^n, & 0 < t \leq \theta \\
1, & t \geq \theta \\
\end{array}\right.
\]
Como \(P_\theta(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n))\) é absoulatemente contínua para todo \(\theta > 0\), temos que \(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n)\) é uma variável aleatória contínua cuja f.d.p. é dada por \[
f_\theta^{\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n)}(x) =\left. \frac{d}{dt} P_\theta(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n) \leq t) \right\rvert_{t=x}
= \left\{\begin{array}{ll}
\frac{n x^{n-1}}{\theta^n}, & 0 < x \leq \theta \\
0, & \mathrm{c.c.}
\end{array}\right. .
\]
Logo, \[
\begin{aligned}
E_\theta(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n)) &= \int^{\infty}_{-\infty} w f_\theta^{\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n)}(w) dw \\
&= \int^\theta_0 w \frac{n w^{n-1}}{\theta^n} dw \\
&= \frac{n}{\theta^n} \int^\theta_0 w^n dw = \left.\frac{n}{\theta^n}\frac{w^{n+1}}{n+1} \right\rvert_{0}^\theta = \frac{n}{n+1}\theta, \forall \theta \in \Theta, \\
\Rightarrow E_\theta(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n)^2) &= \frac{n\theta^2}{n+2}, \forall \theta \in \Theta, \\
\Rightarrow \mathrm{Var}_\theta(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n)) &= \frac{n\theta^2}{n+2} - \left(\frac{n}{n+1}\right)^2\theta^2 \\
\Rightarrow \mathrm{EQM}_\theta(\hat{\theta}_{\mathrm{MV}}(\pmb{X}_n),\theta) &= \frac{n}{n+2}\theta^2 -
\frac{n^2}{(n+1)^2}\theta^2 + \left(\frac{n}{n+1}\theta - \theta\right)^2 \\
&= \theta^2\left(\frac{n}{n+2} - \frac{2}{n+1} + 1\right)
\end{aligned}
\]